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This documents contains a set of exercises for reviewing the topics of the
lectures. Some of the exercises come from the past, meaning we have men-
tioned them in the class or clarify things we didn’t do in detail. Some of the
exercises come from the future, as they will be useful tools in classes which
are still to be held (but involve notions we already discussed). Moreover, we
collect many definitions and pieces of notation used in the course.

Symbols. Some exercises have a symbol. A book _ is for for exercises
useful to review and familiarize with notions seen in class. An eye 4 means
that the exercise will be useful for future lectures (we suggest that you read
and understand their statements, at least).

Definitions and notation

We recall some notation and terminology used in the course.

Data defining a graph. If X is a graph, we denote by X0 its vertex
set and by X1 its set of (oriented) edges. Then, αX : X1 → X0 and ωX :
X1 → X0 denote the “initial vertex” and “terminal vertex” functions. Finally,
we have an inversion function e ↔ e which is an involution of X1, with
e ̸= e, such that αX(e) = ωX(e). Usually we omit the subscript X from the
notation, if it is clear from the context.

A geometric edge a subset of X1 of the form {e, e}.

Remark. The intuition behind this formalization is that we want to describe
unoriented graphs; for each geometric edge we have two distinct elements of
X1 representing the two ways (orientations) of crossing the geometric edge.
Loops (edges with α(e) = ω(e)) are allowed (notice that e ̸= e also for
loops!), as well as multiple edges sharing the same endpoints. We do not
impose restrictions on the cardinality of the vertex or edge sets.

Topological realization of a graph. Let X be a graph. Its topological
realization real(X) is the topological space obtained as follows. Endow X0
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and X1 with the discrete topologies, the interval [0, 1] with the Euclidean
topology, and consider on the disjoint union

X0 ⊔ (X1 × [0, 1])

the finest equivalence relation ∼ such that: (e, 0) ∼ α(e) and (e, t) = (e, 1−t)
for every e ∈ X1 and t ∈ [0, 1]. Then, real(X) is the quotient (as a topological
space) of X0 ⊔ (X1 × [0, 1]) by this equivalence relation.

Subgraphs. A subgraph Z ⊆ X is given by subsets Z0 ⊆ X0 and Z1 ⊆
X1 so that inversion and endpoint functions restrict to them; with these
restricted functions, Z becomes a graph on its own.

Morphisms of graphs. A morphisms f : X → Y between two graphs
consists of functions f : X0 → Y 0 and f : X1 → Y 1 such that f(e) = f(e)
and f(αX(e)) = αY (f(e)). It then also follows that f(ωX(e)) = ωY (f(e))).
If Z ⊆ X is any subgraph, then f(Z) is defined in the obvious way and is
a subgraph of Y . A morphism is injective/surjective if it is so at the level
of both vertices and edges. It is an isomorphism if it is both injective and
surjective. Given a graph X, the self-isomorphisms f : X → X are called
automorphisms; they form a group under composition, which we denote by
Aut(X).

Stars and local properties of morphisms. The star of a vertex x ∈ X0

is the set stX(x) = {e ∈ X1 : α(e) = x}. The valence of x is the cardinality
of its star. A morphism f : X → Y restricts, for every x ∈ X0, to a function
fx : stX(x) → stY (f(x)). The morphism is locally injective/surjective if for
every x ∈ X0 the function fx is injective/surjective.

Covering maps. We say that a morphism is a covering map if it is both
locally injective and locally surjective. If f : X → Y is a covering map, then
a covering automorphism of p is an automorphism φ ∈ Aut(X) such that
f ◦ φ = f . The covering automorphisms of f form a subgroup of Aut(X),
which we denote by Autf (X).

Paths and connected graphs. A path of length 0 is a vertex; a path
of length n ∈ N>0 is a list of edges e1 . . . en such that α(ei+1) = ω(ei)
for i ∈ {1, . . . , n− 1}. Any path has an initial vertex and a terminal vertex
defined in the obvious way. A path is closed if its initial and terminal vertices
coincide. A path is reduced if it either has length 0, or it has length n ≥ 1
and ei+1 ̸= ei for every i ∈ {1, . . . , n − 1}. A graph X is connected if it is
nonempty (X0 ̸= ∅) and for every x, y ∈ X0 there exists a path joining x to
y (i.e., with initial vertex x and terminal vertex y).
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Circuits and trees. For every positive integer n, let Cn be the “stan-
dard circle with n vertices”: the graph with vertex set {1, . . . , n} and edges
connecting them in a circular fashion (formally, C1

n would be a set with 2n
elements, e.g., C1

n = {e ∈ Z : 1 ≤ |e| ≤ n}, with endpoint and inversion
functions defined appropriately). A circuit in a graph X is a subgraph iso-
morphic to Cn for some positive integer n; in other words, it is the image of
an injective morphism Cn → X. A tree is a connected graph that doesn’t
have any circuits.

Equivalence relations and quotients. An equivalence relation on a
graph X is given by two equivalence relations, one on X0 and one on X1,
that satisfy the following property (we denote with ∼ the relation both for
vertices and edges): if e1 ∼ e2 are equivalent edges, then α(e1) ∼ α(e2)
and e1 ∼ e2 (then, it follows that also ω(e1) ∼ ω(e2)). The equivalence
relation is without inversions if no edge is equivalent to its inverse. Given
an equivalence relation ∼ without inversions, the quotient X/∼ is formed in
the natural way, with endpoint and inversion functions inherited from X (if
there were inversions, the quotient wouldn’t be a graph! There would be an
edge inverse of itself). There is a natural projection X → X/∼, which is a
graph morphism.

Group actions and quotients. A (left) action G ↷ X of a group G on
a graph X is given by two (left) actions G ↷ X0 and G ↷ X1 so that
endpoint and inversion functions are G-equivariant. In other words, it is
a homomorphism G → Aut(X). We say that G acts without inversions if
g · e ̸= e for every g ∈ G and e ∈ X1. An action G ↷ X induces an
equivalence relation (the orbit relation) on X, which is without inversions
precisely when the action is without inversions. The resulting quotient, which
is defined if the action is without inversions, is denoted by G\X. An action
is free if it has no inversions and is free on vertices, i.e., g · x ̸= x for every
x ∈ X0 and g ∈ G \ {1G} (it follows that G acts freely also on X1).

Generating systems and rank of a group. Let G be a group. A gen-
erating system for G is given by a set S and a function [·]G : S → G such
that its image [S]G generates G as a group, i.e., every element of G is equal
to a product of the form 1G · [s1]ε1G · . . . · [sk]εkG for some k ∈ N, si ∈ S and
εi ∈ {±1}. When we say “Let S be a generating system for G” we mean that
we have fixed a function S → G as above, which is often kept implicit in the
notation (so we can write things like s1s2 ∈ G. In other words, we think of
any s ∈ S as a name of an element of G, and in principle an element of G
could have multiple different “names” in S). Often, S is just a subset of G
(which generates G) and the map is the inclusion: [s]G = s. The rank of G,
denoted by rank(G), is the minimum cardinality of a generating system of
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G (i.e., of a set S as above), which is the same as the minimum cardinality
of a subset of generators of G.

Cayley graphs. Let G be a group and S be a generating system of G.
Let S be a disjoint copy of S (a set of formal “inverses”), with a bijection
S ↔ S, which we write as s 7→ s; we extend the function s 7→ [s]G ∈ G to
the disjoint union S⊔S by setting [s]G = [s]−1

G . The Cayley graph of G with
respect to S, which we denote by Γ(G,S), is the graph with:

• Γ(G,S)0 = G;

• Γ(G,S)1 = G× (S ⊔ S);

• α((g, s)) = g, ω((g, s)) = g · [s]G, for every (g, s) ∈ G× (S ⊔ S);

• Inversion function (g, s) = (g · [s]G, s).

There is a standard action G ↷ Γ(G,S), given by g · x = gx for vertices
x ∈ G, and by g · (x, s) = (gx, s) for edges (x, s) ∈ G× (S ⊔ S).

Bases and free groups. Let G be a group. A subset S ⊆ G is a basis of
G if for every g ∈ G we can write in a unique way

g = 1G · sε11 · . . . · sεkk

with k ∈ N, si ∈ S, εi ∈ {±1} with εi+1 = εi whenever si+1 = si. A group
is free if it admits a basis. Given any set S, there is a canonical construction
of a free group FS and an injective function S ↪→ FS so that the image of S
is a basis of FS . We usually think of S as included into FS , so that S itself
is a basis. In general, we say that a generating system S of a group G is a
basis if the function S → G is injective and its image is a basis.
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1 First lecture (November 6)

Exercise 1.1._ What are the regular graphs of valence 2?

Definition 1.2 (Standard lines). For every n ∈ N, including n = 0, denote
by Pn the graph X with vertex set {0, . . . , n}, and edges “connecting the
vertices in a line, in increasing order”. The formal description would require
P 1
n to consist of 2n elements, e.g., P 1

n = {e ∈ Z : 1 ≤ |e| ≤ n}, and endpoint
and inversion functions defined appropriately. Also define P∞ (the standard
infinite ray) with vertex set N and edges connecting consecutive numbers.

Exercise 1.3._ Prove that a path of length n in a graph X “is the same” as
a morphism Pn → X, and that reduced paths correspond to locally injective
morphisms.

Exercise 1.4._ If two vertices of a graph are joined by a path, then they are
joined by an injective (hence, reduced) path.

Exercise 1.5.ï Let X be a connected graph in which each vertex has finite
valence (we say that X is locally finite). Prove that, if X does not contain
an infinite injective ray (i.e., there is no injective morphism P∞ → X, see
Definition 1.2), then X is finite.

Exercise 1.6._ 4 Let T be a tree. Show that any closed reduced path in
T has length 0. Show that a path in T is reduced if and only if it is a
length-minimizing path, i.e., it minimizes the length among paths with the
same endpoints (hint: induction on the minimum length of paths joining the
endpoints; the base case — length 0 — corresponds to the first sentence).

Recall that these paths are called geodesics; for a graph which is not
necessarily a tree, we call geodesic any length-minimizing path.

Exercise 1.7._ 4 Let X be a connected graph. Show that X is a tree if and
only if any reduced path in X is length-minimizing, if and only if any closed
reduced path in X has length 0.

Exercise 1.8._ Every nonempty graph has a maximal subtree with respect
to inclusion (we have seen in the lecture that, if the graph is connected, such
a maximal subtree contains all the vertices, and is called a spanning tree).

Exercise 1.9 (Sets hanging from a tree)._ 4 Let T be a tree. Suppose we have
a (possibly infinite) sequence of sets V1, V2, . . . and functions

T 0 V1 V2 . . .
f1 f2 f3

.

Form a new graph X whose vertex set is the disjoint union of T 0 and all the
Vi’s, and having the same edges as T , plus one geometric edge (formally, two
edges inverses of each other) for each v ∈ Vi, joining v and fi(v). Prove that
X is a tree. This is a very natural construction of a tree, which often occurs
in the special case where T has just one vertex.
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2 Second lecture (November 10)

Exercise 2.1 (Morphisms on topological realizations)._ Describe how a graph
morphism f : X → Y induces a continuous map real(f) : real(X) → real(Y );
show that the induced map is injective/surjective if and only if f is so.

Exercise 2.2 (Combinatorial vs. topological conditions)._ A graph X is con-
nected if and only if its topological realization is path-connected; it is finite
if and only if its topological realization is compact.

Exercise 2.3 (Trees are contractible).4 Show that the topological realization
of a tree is contractible. (Use geodesics to retract to a chosen vertex.)

Exercise 2.4. Let X be a tree and let S be a nonempty set of vertices of
X, with diameter n. Then, the subtree generated by S (which is defined as
the smallest subtree of X containing S) has diameter equal to n.

Exercise 2.5 (Relations and surjective morphisms)._ Let p : X → Y be
a surjective graph morphism. Show that the relation ∼ on X defined as
x1 ∼ x2 ⇐⇒ f(x1) = f(x2) for vertices, and with the analogous definition
for edges, is an equivalence relation on X without inversions, and that the
quotient X/∼ is isomorphic to Y , with p : X → Y corresponding to the
quotient projection. In the opposite direction, if X is a graph and ∼ is an
equivalence relation on X without inversions, then the projection X → X/∼
is a surjective morphism.

Exercise 2.6 (Lifting trees1)._ 4 Let f : X → Y be a locally surjective mor-
phism of graphs, T ⊂ Y be a subtree, and x0 ∈ X0 such that f(x0) ∈ T 0.
Then, there exists a subtree L ⊆ X containing x0 that lifts T , i.e., f restricts
to an isomorphism L ∼= T .

Exercise 2.7._ Show that the conclusion of Exercise 2.6 doesn’t necessarily
hold if f is a surjective morphism.

Exercise 2.8.4 If a group G acts on a graph X without inversions, then the
projection X → G\X is a locally surjective morphism (therefore, subtrees
can be lifted as in Exercise 2.6).

1During the lecture, an imprecise version was stated, which does not hold, see Exer-
cise 2.7 (and Exercise 2.5); this exercise amends that statement, and the proof given in
class actually works as a solution.
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3 Third lecture (November 13)

Exercise 3.1._ Let G be a free group with a basis S. Then, rank(G) is equal
to the cardinality of S.

Exercise 3.2.` Let f : X → Y be a locally surjective morphism between
connected graphs. Show that f is surjective.

Exercise 3.3._ A graph morphism f : X → Y is a covering map if and only
if the induced continuous function real(f) : real(X) → real(Y ) is a covering
map in the topological sense.

Exercise 3.4._ Let f : X → Y be a covering map of graphs. Show that any
covering automorphism (in the topological sense) of real(f) is induced by
a unique covering automorphism of p. This gives an isomorphism between
Autf (X) and the group of (topological) covering automorphisms of real(f).

Exercise 3.5. Consider the generating system of G = Z/2Z×Z/2Z given by
the set S = {a, b} whose elements are sent to G as a 7→ ([1], [0]), b 7→ ([0], [1]).
Draw Γ(G,S). Then, find a basis of the kernel of FS ↠ G.

Exercise 3.6. Let F2 be a free group of rank 2, with basis S = {a, b}, and
let f : F2 → Z×Z be the homomorphism sending a 7→ (1, 0) and b 7→ (0, 1).
What is the rank of the kernel of f? Find a basis of it.

Exercise 3.7. Let S be a generating system of a group G. Show that the
Cayley graph Γ(G,S) is a tree if and only if S is a basis of G, meaning that
S → G is injective and its image is a basis of G.
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