

Simplicial spheres, maps between them, and the simplicial volume of Davis' manifolds

Francesco Milizia

Scuola Normale Superiore

A partial order for triangulated spheres

Let S and T be simplicial complexes homeomorphic to the *n*-sphere $Sⁿ$, for some $n \geq 1$. S dominates T (notation: $T \leq S$) if there is a simplicial map $f : S \to T$ with $\deg(f) \neq 0$. For every n we obtain a poset

$$
\left(\left\{\begin{matrix} \text{triangulations of } S^n \\ \text{up to isomorphism} \end{matrix}\right\}, \leq \right)
$$

.

Example: Triangulations of the circle.

$$
\sum_{i=1}^{n} \left\{ \begin{array}{c} 1 & \text{if } i \neq j \\ 1 & \text{if } i \neq j \end{array} \right\} \quad \text{and} \quad \sum_{i=1}^{n} \left\{ \begin{array}{c} 1 & \text{if } i \neq j \\ 1 & \text{if } i \neq j \end{array} \right\} \quad \text{and} \quad \sum_{i=1}^{n} \left\{ \begin{array}{c} 1 & \text{if } i \neq j \\ 1 & \text{if } i \neq j \end{array} \right\} \quad \text{and} \quad \sum_{i=1}^{n} \left\{ \begin{array}{c} 1 & \text{if } i \neq j \\ 1 & \text{if } i \neq j \end{array} \right\} \quad \text{and} \quad \sum_{i=1}^{n} \left\{ \begin{array}{c} 1 & \text{if } i \neq j \\ 1 & \text{if } i \neq j \end{array} \right\} \quad \text{and} \quad \sum_{i=1}^{n} \left\{ \begin{array}{c} 1 & \text{if } i \neq j \\ 1 & \text{if } i \neq j \end{array} \right\} \quad \text{and} \quad \sum_{i=1}^{n} \left\{ \begin{array}{c} 1 & \text{if } i \neq j \\ 1 & \text{if } i \neq j \end{array} \right\} \quad \text{and} \quad \sum_{i=1}^{n} \left\{ \begin{array}{c} 1 & \text{if } i \neq j \\ 1 & \text{if } i \neq j \end{array} \right\} \quad \text{and} \quad \sum_{i=1}^{n} \left\{ \begin{array}{c} 1 & \text{if } i \neq j \\ 1 & \text{if } i \neq j \end{array} \right\} \quad \text{and} \quad \sum_{i=1}^{n} \left\{ \begin{array}{c} 1 & \text{if } i \neq j \\ 1 & \text{if } i \neq j \end{array} \right\} \quad \text{and} \quad \sum_{i=1}^{n} \left\{ \begin{array}{c} 1 & \text{if } i \neq j \\ 1 & \text{if } i \neq j \end{array} \right\} \quad \text{and} \quad \sum_{i=1}^{n} \left\{ \begin{array}{c} 1 & \text{if } i \neq j
$$

Figure 1. The poset for $n = 1$. We actually get a linear order.

For $n \geq 2$ the poset is much more complicated.

I would like to understand the structure of some specific subposets of the ones just defined. The motivation comes from the study of an invariant of manifolds: the simplicial volume.

A specific subposet that I care about

Consider triangulations of the 3-sphere. But not all of them: only the ones that are flag.

What is a *flag* simplicial complex?

 S is flag if every subset of pairwise-adjacent vertices spans a simplex in S . In other words, S is the maximal simplicial complex with a given 1-skeleton.

Consider a further subposet, given by flag 3-spheres with nonzero γ_2 .

If S is a triangulation of S^3 (there is a more general definition), then

$$
\gamma_2(S) = 16 - 8v(S) + 4e(S) - 2f(S) + t(S) = 16 - 5v(S) + e(S),
$$

where v, e, f, t denote the number of $0, 1, 2, 3$ -simplices.

Theorem (Davis, Okun): $\gamma_2(S) \geq 0$ if S is a flag 3-sphere.

What I have found up to now.

There are at least two distinct minimal elements:

- T_{10} has 10 vertices, and is the join of two pentagons;
- T_{12} is a triangulation with 12 vertices, already described in a preprint by L. Venturello.

With a computer, **I have generated thousands** of flag 3-spheres with $\gamma_2 > 0$; all of them dominate T_{10} or T_{12} . Checking this is not that easy, I had to invent a sufficiently effective algorithm.

The simplicial volume is a numerical homotopy invariant for compact topological manifolds.

-
-

 T_9 is the flag triangulation of S^2 in Figure [2.](#page-0-0) In other words, the poset

Motivation, Part I — Simplicial volume

M manifold \rightsquigarrow $||M|| \in \mathbb{R}_{\geq 0}$

The simplicial volume $||M||$ is a nonnegative real number. Usually, we aren't interested in the precise value, but in whether it is zero or positive. Some typical examples:

If M is a Riemannian manifold with strictly negative sectional curvature, then $||M|| > 0$; If M is a Riemannian manifold with **nonnegative sectional curvature**, then $||M|| = 0$.

In general, it is uncomputable. An algorithm cannot accept (triangulated) manifolds M in input and decide whether $||M|| = 0$ or $||M|| > 0$.

A minor of a graph G is a graph obtained from G with a sequence of three types of operations:

- **Erasing an edge;**
- **Erasing a vertex;** • Collapsing an edge.

Let S and T be triangulations of $S^2.$ If $\bm{T^{(1)}}$ is a minor of $\bm{S^{(1)}},$ then $\bm{T} \leq \bm{S}.$ More precisely, there is a simplicial map $f : S \to T$ with $|\deg(f)| = 1$.

Gromov conjectured a relation between the simplicial volume and the Euler characteristic of aspherical manifolds.

The question of Gromov: Does the implication

$$
||M|| = 0 \Longrightarrow \chi(M) = 0
$$

hold for closed aspherical manifolds?

This is the lowest dimension in which we can really test Gromov's question. The Euler characteristic $\chi(M(S))$, for $S\cong S^3$, is easily computed: $\chi(\bm{M(S)}){=}2^{\bm{v(S)}{-}4}\cdot\bm{\gamma_2(S)}.$

This has become a central question in the community studying simplicial volume. My idea is to test it in a particular class of manifolds, arising from a construction of Michael W. Davis.

Motivation, Part II — Davis' manifolds

Davis' construction as a black box.

Actually, $M(T)$ has more structure: it is a cube complex. Some important properties:

flag triangulation of a sphere \rightarrow aspherical manifold.

Let S and T be triangulations of S^n . If $T \leq S$, then $||M(T)|| \leq ||M(S)||$.

The case $n=2$

 \setminus

Let S be a flag triangulation of S^2 . $\|M(S)\| > 0$ if and only if $S \geq T_9$.

 $\sqrt{ }$ \int $\overline{\mathcal{L}}$ flag triangulations of S^2 giving $\big)$ positive simplicial volume, up to isomorphism \int $, \leq \bigg\}$.

In particular:

My idea is to test Gromov's conjecture on the manifolds obtained in this way. However, understanding whether $||M(S)||$ is positive or vanishes seems an hard task. After some work, I proved the following result.

For flag triangulations of S^2 , I have found the following characterization:

has only one minimal element: T_9 . Figure 2. The 1-skeleton of the flag 2-sphere T_9 .

Graph minors

For $n = 2$, I have also found a connection with the theory of graph minors.

Figure 3. The collapse of the red edge.

Triangulations of S^2 are well-quasiordered by \leq . In particular, ${\sf every}$ subposet has a finite number of minimal elements up to isomorphism;

 $S \geq T \implies \exists f : S \to T$ with $0 < |\deg(f)| \leq d_T$;

For every $T \cong S^2$, there is a **polynomial-time algorithm** to decide (given S) whether $S \geq T$.

If is there a universal polynomial-time algorithm that works for every T ? Can we extend these results for triangulations of $Sⁿ$, for some $n > 2$?

Can we do something similar for triangulations of higher-dimensional spheres?

Graph minor theorems and their consequences

Robertson and Seymour, in a long series of papers, established very deep results about the notion of graph minors. This is among the most important ones:

Graph minor theorem. Let G_1, G_2, \ldots be an infinite sequence of (finite) graphs. Then there are indices $i < j$ such that G_i is a minor of $G_j.$

In short, the minor relation is a well-quasiorder on finite graphs. They also proved:

Let H be a graph. There is a **polynomial-time algorithm** that given a graph G decides whether H is a minor of G . However, the same algorithmic problem with H not fixed is NP-complete.

From the connection with the relation \leq for 2-spheres, we deduce interesting consequences:

-
- For every $T \cong S^2$, there is $d_T \in \mathbb{N}$ such that
-
- Can we always take $d_T=1$?
-
-

The case n=3

Find the minimal elements of the subposet of flag 3-spheres S with $\gamma_2(S) > 0$; • Check if $||M(S)|| > 0$ for S such a minimal element.

Two steps to check Gromov's conjecture:

-
-

I know that $\|M(T_{10})\| > 0$, but **I still don't know if** $\|M(T_{12})\| > 0$.

Ask me, or scan the QR code in the corner.

References

